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Abstract. Exactly solvable potentials of nonrelativistic quantum mechanics are
known to be shape invariant, For these potentials, eigenvalues and eigenvectors can
be derived using well known methods of supersymmetric quantum mechanics, The
majority of these potentials have also been shown to possess a potential algebra,
and hence are also solvable by group theoretical techniques. In this paper, for a
subset of solvable problems, we establish a connection between the two methods

and show that they are indeed equivalent.

1 Introduction

It is well known that most of the exactly solvable potentials of nonrelativistic
quantum mechanics fall under the Natanzon class (Natanzon (1979)) where
the Schrodinger equation reduces either to the hypergeometric or the con-
fluent hypergeometric differential equations. A few exceptions are known
(Spiridinov (1992), Barclay et al. (1993)), where solvable potentials are given
as a series, and can not be written in closed form in general. With the ex-
ception of Ginnochio potential, all exactly solvable potentials are known to
be shape invariant (Gendenshtein (1983), Gendenshtein and Krive (1985));
i.e. their supersymmetric partners are of the same shape, and their spectra
can be determined entirely by an algebraic procedure, akin to that of the
* one dimensional harmonic oscillator, without ever referring to the underlymg
differential equations (Cooper et al. (1995)).

Several of these exactly solvable systems are also known to possess what
is generally referred to as a potential algebra (Alhassid et al. (1983), Barut
et al. (1987), Englefield and Quesne (1987), Englefield (1987), Wu et al.
(1990}, Tangerman (1993)). The Hamiltonian of these systems can be written
as the Casimir of an underlying SO(2,1) algebra, and all the quantum states
of these systems can be determined by group theoretical methods.

Thus, there appear to be two seemingly independent algebraic metliods
for obtaining the complete spectrum of these Hamiltonians. In this paper, we
analyze this ostensible coincidence. For a category of solvable potentials, we
find that these two approaches are indeed related.

In the next section, we briefly describe supersymmetric quantum mechan-
ics (SUSY-QM), and discuss how the constraint of shape invariance suffices
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to determine the spectrum of a shape invariant potential (SIP). In sec. 3,
we judiciously construct some algebraic operators and show that the shape
invariance constraint can be expressed as an algebraic condition. For a set of
shape invariant potentials, we find that the shape invariance condition leads
to the presence of a SO(2,1) potential algebra, and we thus establish a con-
nection between the two algebraic methods. In sec. 4, for completeness, we
provide a brief review of SO(2,1) representation theory In sec. b, we derive
the spectrum of a class of potentials and explicitly show that both methods

indeed give identical spectrum.

2 SUSY-QM and Shape Invariance

A quantum mechanical system specified by a potential V_{z) can alterna-

tively be described by its ground state wavefunction 1&8"). Apart from a con-
stant (chosen suitably to make the ground state energy zero), it follows from

the Schrodinger eqﬁafsion that the potential can be written as V. (z) = %’; ,

where prime denotes differentiation with respect to z. In SUSY-QM, it is cus-
tomary to express the system in terms of the superpotential W(z) = — %ﬁ-
rather than the potenﬁial, and the ground state wavefunction is then given by
g ~ exp‘(-— f:; W(m)da:), where zg is an arbitrarily chosen reference point.
We are using units with % .and 2m = 1. The Hamiltonian H_ can now be
written as ‘

H_::( d2+V(w)) (dd22+wﬂ() i‘%’—)) (1) |

dz?

However, as we shall see, there is another Hamiltonian Hy with poten-
tial Vi(z) = (Wz(m) + i’%ﬂ), that-is almost iso-spectral with the orig-
inal potential V_(z). In particular, the eigenvalues E} of H.,.(m) satisfy
E}f = BEj, where E; are eigenvalues of H_(z) and n = =0,1,2,-
i.e. except the ground state all other states of H_ are in one-to—one corI-
respondence with states of Hy. The potentials V_(z) and Vi(z) are known
as supersymmetric partners. :
In analogy with the harmonic oscillator, we now define two operators:
= (£ + W(z)), and and its Hermitian conjugate A* = (& + W( z)).
Hamlltomans H . and its superpartner H. are given by operators AT A and
AAT respectively.
: Now we shall explicitly establish the iso-spectral relationship between
states of H} and H —. Let us denote the eigenfunctlons of Hy that correspond

to eigenvalues EX, by qb(i) Forn=1,2;-
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Hy (497)) = Aat (49} = 4 (arag() = 4B (4))
=5 (a) @

L]

Hence, excepting the ground state Wh.lch obeys Aq!;( ) = = 0, for any state
() of H_ there exists a state A¢ of H; with exactly the same energy,

n
ie. E+ = E;, where n = 1,2,--, ie. Ai/)( ) ¢(+) Conversely, one
also has A+¢(+) & 1,b( ) . Thus, if the eigenvalues and the eigenfunctions
of H_ were known, one Would automatically obtain the eigenvalues and the
eigenfunctions of H ., which is in general a completely different Hamiltonian.

\'A (x,al)=V“. (x,a2)+R(a;)

____________________________________________________________________

V, (x,a9=V_ (x;,al)+R(aa)

V.f_(x,ao)

Fig. 1. A series of potentials related by shape invariance. Dashed lines represent
eigenvalues of the sytem with potential V_(z,a0).

Now, let us consider the special case where V_(2) is a SIP. This im-
plies that V_(z) and V() have the same functional form; they only dif-
fer in values -of other discrete parameters and possibly an additive con-
stant. To be explicit, let us assume that in addition to the continuous vari-
~ able z, the potential V_(z) also depends upon a constant parameter do;
ie., V. = V_(2,ap). The ground state of the system of H_ is given by
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Yol ap) ~ exp (— f:o W(m,ag)dm) . Now, for a shape invariant V_(z, ao),
oné has, V,(z,ao) = V-(2,a1) + R(ao) , where R(ao) is the additive con-
stant mentioned above. Since potentials Vj (2, ao) and V_(z,q;) differ only
by R(ao), their common ground state is (2, a1) ~ exp (—~ i) :o W(:c,al)d:c).
Now using SUSY-QM algebra, the first excited state of H_(z, agg is given by
A“'(w,ao)i,b{(,_) (z,a1). Its energy is Eg“) , which is equal to E((,+ . But since
E’S") =0, ESH must be R(ag). Continuing up the ladder of series of poten-
tials V.. (z, a;), we can obtain the entire spectrum of H_ by algebraic methods
of SUSY-QM. The eigenvalues are given by

n—1
ESY =0; and B =" R(ai) forn >0,
o k=0 -

' ~and the n-th eigenstate is given by
¥ (%, a0) ~ A*(a0) A¥ (@) -+ At (an-1) 957 (2, an-1) .

(To avoid notational complexity, we have suppressed the z-dependence of
operators A(z, ag) and At (z, ao).)

3 Shape Invariance and Potential Algebra

Let us consider the special case of a potential V. (2, ap) with an additive shape
invariance; i.e. Vi(z,a0) = V_(z, a1)+ R(ao), where a, = an—1+6 = ag+né,
where ¢ is a constant. Most SIP’s fall into this category. For the superpotential
W (z,a,) = W(z,m), the shape invariance condition implies

W?(z,m) + W' (z,m) = W(z,m+1) - W(z,m+1)+ R(m)  (3)

As described in the last section, this constraint suffices to determine the
entire spectrum of the potential V_(z,m). In this section, we shall explore
the possible connection of this method with the potential algebra discussed
by several authors (Alhassid et al. (1983), Barut et al. (1987), Englefield and
Quesne (1987), Englefield (1987), Wu et al. (1990}, Tangerman (1993)).

Since for a SIP, the parameter m is changed by a constant amount each
time as one goes from the potential V.. (z, m) to its superpartner, it is natural
to ask whether such a task can be formally accomplished by the action of a
ladder-type operator,

With that in mind, we first define an operator J3 = —¢ %, analogous to
the z-component of the angular momentum operator. It acts upon functions
in the space described by two coordinates = and ¢, and its eigenvalues m play
the role of the parameter of the potential. We also define two more operators,
J~ and its Hermitian conjugate J* by
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peet g ow (o)) o

The factors e*? % in J* ensure that they indeed operate as ladder operators for
the quantum number m. Operators J* are basically of the same form as the
A% operators described earlier in sec. 2, except that the parameter m of the
superpotential is replaced by operators (J3 + ) Wlth explicit computa.tzon, ’

we find
[Js, J%] = e , (5)

and hence operators J* change the eigenvalues of the J operator by unity,
similar to the ladder operators of angular momentum (SU(2)). Now let us
determine the remaining commutator [J T, J ]. The product J+J~ is given

by

., 18 1 ; i} 1
T =it | s -t | _ -
JTJ  =e [6:1: W (w,J3+2)]e [ 52 W(:c,J 2)]

- 1 , 1
= [—@-FW (iE,J —5) -Ww (a:,J —E)] ‘ (6)
Similarly, - |

2,
JMJ+:[.'...»-(‘%;~2-+W2(3 J3 + )-‘}-W(a},Ja-f-%)] . (7)

Hence the commutator of operators J4 and J_ is given by
' i 1 ‘ i
07 = |- 2 _A2Y _ 1
[Jt,J7] = [ 7 +W (:c Ja 2). 1574 (m,J3 2)]
P E
- [ ; +W2(:B J3+1)+W’(3,J3+%)]

.=—R(J3+§), | | (8)

where we ha.ve used the constraint of shape invariance, i.e. V. (z,J3 — §) —
Vi(z,Ja+ 3) = —R(Js + 3). Thus, we see that Shape Invariance enables us

to close the algebra of Ja and J* to

[Jg,J:k] =4J* [7t,J"]=-R (Ja+-21-) . (9)

Now, if the function R(J3) were linear in J3, the algebra of eq.(9) would re-
duce to that of a SO(3) or SO(2,1). Several SIP’s are of this type, among them
are the Morse, the Rosen-Morse and the Poschl-Teller I and II potentials. For
these potentials, R (J3 + %) = 2 Js, and eq.(9) reduces to an SO(2,1) algebra
and thus establishes the connection between shape invariance and potential-
algebra. Even though there is much similarity between SO(2,1) and SO(3)
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algebras, there are some important differences between their representations.
Hence, for completeness, we will briefly describe the unitary representations
of SO(2,1) and refer the reader to Adams et al. (1987) for a more detailed

presentation.

~

4 Unitary Representations of SO(2,1) Algebra

In this section, we shall briefly review the SO(2,1) algebra and its unitary
representations (unireps). This description is primarily based upon a review
article by B.G. Adams, J. Cizeka and J. Paldus (1987). The generators of the
SO(2,1) algebra satisfy

[Ja, J%] = £7% 5[y, /] = —2Js (10)

where J* are related to their Cartessian counterparts by J =] + J
(For the familiar SO(3) case, one has [J, J-] = +2Js). The Casimir of the
S0(2,1) algebra is :

Pty + 2 -0 =-J"J"+J} 4+ . (11)

In analogy to the representation of angular momentum algebra, one can
choose J2 and one of the Ji’s as two commuting observables. However, un-
like the SO(3) case, each such choice of a pair generates a different set of
inequivalent representations. For bound states, we choose the familiar repre-
sentation space of states |j,m) on which the operators {J 2 J3} are diagonal:
J2l5,m) = j(§ + Dj, m), Js|j, m) = m|j, m). Operators J* act upon |7, m}
states as ladder operators: JE|j,m) = [~ Fm)(j +m + 1)]!5 lj,m+1).
Since the quantum number m increases in unit steps for a given j, the gen-
eral value for m is of the form mg + n, where n is an integer and my is a real
number. There is also another constraint on the quantum numbers m and
4. In unitary representations, J* and J~ are Hermitian conjugates of each
other, and J*J~ and J~J7T are therefore positive operators. This implies
[iFm)iEm+1)] = - [(_7 + %)2 - (m+ —%—)2] > 0. These constraints
can be illustrated on a two dimensional planar diagram [Fig.2] depicting the
allowed values of m and j. Only the open triangular areas DFB, HEG and
the square AEFC are the allowed regions. The values of |m| are no longer
bounded by j, and depending on the myg (the starting value of m), represen-
tations multiplets are either semi-infinite (bounded from below or above) or
completely unbounded. Thus there is no finite (nontrivial) unitary represen-.
tation of SO(2,1). In general, there are four classes of unireps.
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Bounded from below it n=0.12...
Dt(f) (4, mo) lie along {T.n<—0 I =SS
the segment AB J ’
Bounded from above
D=(j) (4, mo) lie along {

m=j+n; n‘:o}"']-"“za"'s
the segment AG '

j <0,

m="mp+n; n::O,:;:l,:;:g,..‘.’

. j, mg) lie in
D, (Gmg) Gy ek {;(g 1)< (el - el
bk < dmy

Unbounded and

complex j A Ma < ~3

J —'——+zﬁ

m mo + n; n....O:I:I :!:2 v
Dp(j:mﬂ)

Here we will be interested in representations that are bounded from either
below or above. Such representations fall in triangular areas DFB and HEG.
For the D™ representation, the starting value of m can be anywhere on the
darkened part of the line AB; other allowed values of m are then obtained
by the action of the ladder operator J*. Owing to the equivalence of D (4)
and D¥(—j — 1), they correspond to the same value of j(j + 1). One could
have equivalently started anywhere on the segment CD as well and used
Dt (—j —1). Both are equivalent and each is unique. Similarly, for complete
D= (4) (D™ (—Jj —1)) representation, one starts from AG (GH) and generates
all other states by the action of the J~ operator.

5 Example

As a concrete example, we will examine the Scarf pofential which can be
related to the Poschl-Teller II potential by a redefinition of the independent
variable. We will show that the shape invariance of the Scarf potential au-
tomatically leads to its potential algebra: SO(2,1). (Exactly similar analysis
can be carried out for the Morse, the Rosen-Morse, and the Poschl-Teller po-
tentials.) The Scarf potential is described by its superpotential W(z, ap, B) =
agtanh z+ Bsech z. The potential V_(z, ap, B) = W2(z, ap, B)—W'(2, ao, B)
is then given by :

V_{z,a0,B) = [B? — agplag + 1 sech® z -+ B 2a'o+Isecha:tanha:+ag .
| (12)

The eigenvalues of this system are given by (Cooper et al. (1995))
Bz (a-n)? . ' (13)
The partner potential V,.(z, a0, B) = W?(z, ag, B) + W'(z, a0, B) is given by
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JEm+1=0 ‘
JHm=0

Fig. 2. Two dimension plot showing the allowed region for m and j.

Vi (z, ao, B) - [B? — ao(a0 — 1)] sech® z + B(2ao ~ 1)sech = tanhe +af . |
=V_(z,a1,B) +a}—a} , - (14)

where @y = ag — 1. Thus, R(ao) for this case is af — af = 2ao — 1, linear in
ag. . _ ' : o

Now, following the mechanism of the sec. 2, consider a set of operators
J* which is given by ’

Jt = ¢ti¢ [ﬂ:%~{(~—z§$ﬂ:%) tanhz + B sech:c}] . (15)
Note the similarity between the operators J * and operators A defined in
sec. 2. Since only the pararneter ag changes in the shape invariance condition,
it is replaced by Ja=t % Commutators of these operators with Jz = —1 a% can
be shown to close on J=, as discussed in general in Sec. 2. Now, from eq.(9)
and (14), the commutator of J £ operators is given by —2Js, thus forming
a closed SO(2,1} algebra. Moreover, the operator JtJ~, acting on the basis

- |4, m) gives:
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J"f._f“ = [B2 — (m2 - %)J seg:hza:
_ i\a
' +B (2 (m~——) +1) sech z tanh z (m—§) . (16)

which is just the Hgeart (z,m — %, B), i.e. the Scarf Hamiltonian with ao
replaced by m — — . Thus the energy eigenvalues of the Hamiltonian will be
the same as that of the operator J*J~ = J& — J3 — J2. Hence, the energy is
given by E = m? —m — j(j + 1). Substituting j = »n — m, one gets

E,=m?—m—(n—m)?

~(m-dp - [n—-(m-— b )

. which is the same as eq.(13), with ag replaced by (m — 1). Thus for this

potential, as well as for the other three potentials mentioned above, there’ are
actually an infinite number of potentials characterised by all allowed values
of the parameter m that correspond to the same value of j and hence to
the same energy E. Hence the name ”potential algebra® (Alhassid et al.

(1983), Wu et al. (1990)).

Conclusion: The algebra of Shape Invariance plays an important role in the
solvability of most exactly solvable problems in quantum mechanics. Their

"spectrum can be easily generated simply by algebraic means. Many of these

systems also have been shown to possess a potential algebra, which provides
an alternate algebraic method to determine the eigenvalues and eigenfunc-
tions. An obvious question is whether these are two unrelated algebraic meth-
ods or there is a link between them. For a subset of exactly solvable potentials,

those with R(ag) linear in parameter ag, we have shown the equivalence of
their shape invariance property to an S0(2,1) potential algebra. As a concrete
example, we started with the Scarf potential and showed explicitly how shape
invariance translates into the SO(2 1) potential algebra. We détermined the
spectra using the algebra of S0(2,1) and showed them to be the same as that
obtained from shape invariance.

However, we only worked with solvable models for which R(J3) is a hnear
function of Js. There are many systems for which the above is not true. Also
there were new Shape Invariant problems discovered in 1992 (Barclay ef al.
(1993)) for which it is not possible to write the potential in closed form. It
will be interesting to know whether there are potential algebras that describe
these system, and whether they are connected to their Shape Invariance.
These are open problems and are currently under investigation.

One of us (AG) would like to thank the Physics Department of the Uni-
versity of Illinois for warm hospitality. We would also like to thank Dr. P.
Panigrahi for many related discussions.
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